A New Flavonol Oligosaccharide from the Seeds of Aesculus chinensis

Feng WEI*, Ling Yun MA, Yan LIU, Rui Chao LIN
Division of Chinese Materia Medica and Natural Products National Institute for the Control of Pharmaceutical \& Biological Products
State Drug Administration, Beijing 100050

Abstract

A new flavonol oligosaccharide, quercetin-3-O-[β-D-xylopyranosyl-($1 \rightarrow 2$)-α-L-rhamnopyranosyl-($1 \rightarrow 6$)]- β-D-glucopyranoside-3'-O- β-D-glucopyranoside, named aescuflavoside was isolated from Aesculus chinensis. It's structure was elucidated by spectra FAB-MS, 1D NMR and 2D NMR including ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HMQC and HMBC techniques.

Keywords: Aesculus chinensis, flavonol oligosaccharide, aescuflavoside, antivirus activity.

Aesculus chinensis is a traditional chinese medicinal plant widely distributed in China, which has been used to treat stomach disease. From recent research its seeds contain many flavonoids and proanthocyanidin A_{2}, which have potential venotonic and vasoprotective action and powerful antioxidant activity. In this paper, we report the isolation and the structure elucidation of a new flavonol oligosacchride. Bioassay results showed that the compound exhibited an antivirus activity.

1

Compound 1 was isolated as a yellow powder from the EtOH extract of the seeds of this plant. UVmax $(\mathrm{MeOH}) 268,352 \mathrm{~nm}$, and positive results of Molish and $\mathrm{Mg} / \mathrm{HCl}$ reactions suggested that $\mathbf{1}$ was a flavonoid type compound. The FAB-MS of $\mathbf{1}$ displayed quasi-molecular ions $[\mathrm{M}+\mathrm{H}]^{+}$and $[\mathrm{M}+\mathrm{Na}]^{+}$at $\mathrm{m} / \mathrm{z} 905$ and 927 respectively, consistentwith a molecular formula of $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{O}_{25}$. Complete acid hydrolysis of $\mathbf{1}$ afforded quercetin, which was identified by comparison of its NMR and IR data with
those reported in the literatures ${ }^{1-2}$, and glucose, xylose and rhamnose identified by TLC. The FAB-MS data $905[\mathrm{M}+\mathrm{H}]^{+}, 773 \quad[\mathrm{M}-\mathrm{Xyl}+\mathrm{H}]^{+}, 627 \quad[\mathrm{M}-\mathrm{xyl}-\mathrm{rha}+\mathrm{H}]^{+}, 302$ $[\mathrm{M}-x y l-r h a-g l c-g l c]^{+}$confirmed above conclusion. The four sugar residues were clearly indicated by the signals at $\delta_{\mathrm{C}} 98.05,102.03,104.32,100.26$ in ${ }^{13} \mathrm{C}$ NMR spectrum, signals at $\delta_{H} 5.61(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}), 4.86(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}), 4.58(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}), 4.36(\mathrm{~s})$ in ${ }^{1} \mathrm{H}$ NMR spectrum ${ }^{3}$. Above data together with the results in 2D NMR indicated that the saccharide part was composed of two β-glucose, one β-xylose and one α-rhamnose residues. The absolute configurations of β-glucose and β-xylose were assumed to be D , and α-rhamnose be L.

Table $1 \quad{ }^{13} \mathrm{C}$ NMR data for compound $\mathbf{1}$ in DMSO-d6 ($\delta \mathrm{ppm}$)

No.	$\delta_{\text {C }}$	No.	$\delta_{\text {C }}$	No	$\delta_{\text {C }}$	No.	$\delta_{\text {C }}$
2	155.22	$2 '$	116.49	$6{ }^{\prime \prime}$	60.69	4""	69.62
3	133.00	$3 '$	145.11	C3-glc1"'	98.05	5""	65.99
4	177.23	4^{\prime}	149.75	$2{ }^{\prime \prime}$	81.55	Rha 1""'	100.26
5	161.06	$5 '$	116.49	3''	75.84	2""'	70.30
6	98.67	$6{ }^{\prime}$	125.57	$4 " '$	68.17	3""'	71.81
7	164.25	C-3'-Glc 1"	102.03	5"'	76.03	4""	73.36
8	93.88	2 "	73.76	6"'	65.69	5""	69.64
9	156.35	$3 "$	76.95	Xyl 1""	104.32	6""'	17.64
10	103.74	$4 "$	69.62	2""	73.36		
1^{\prime}	121.19	5"	76.71	3""	76.03		

Table 2 the data of HMBC of compound $\mathbf{1}(\delta \mathrm{ppm})$

No.	δ_{H}	Correlation of C	No.	δ_{H}	Correlation of C
$1 " '$	5.61	C-3 (133.00), C-2"' (81.55), C-5"' (76.03)	$1 " \mathrm{\prime} \mathrm{\prime}$	4.36	C-6"' (65.61)
$1 " " "$	4.58	C2"' (81.55)	$5 " '$	3.25	C-6"' (65.61)
$1 "$	4.86	C3' (145.11)			

Hence, the structure of $\mathbf{1}$ was established to be quercetin-3-O-[β-D-xylopyranosyl$(1 \rightarrow 2)$ - α-L-rhamnopyranosyl-($1 \rightarrow 6$)]- β-D-gluc-opyranoside-3'-O- β-D-glucopyrano-side, named aescuflavoside.

References and Notes

1. D. Q. YU, J. S.YANG, Fenxi Huaxue Shouce (Hand book of Anal. Chem.), Chemical Industry Press, Beijing, 1999, p. 820.
2. D. C. CHEN, The Application of ${ }^{13}$ C NMR in Natural Products Chemistry, People's Health Press, Beijing, 1993, p. 360.
3. ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$) of 1, 6.17 (d, 1H, 2, H-6), $6.46(\mathrm{~d}, 1 \mathrm{H}, 2, \mathrm{H}-8), 7.78(\mathrm{~d}, 1 \mathrm{H}, 2, \mathrm{H}-2$ '), 6.89 (d, $\left.1 \mathrm{H}, 8.5, \mathrm{H}-5^{\prime}\right), 7.95$ (dd, 1H, 2, $8.5 \mathrm{H}-6^{\prime}$), 4.86 (d, 1H, 7, H-1"), 5.61 (d, 1H, 7, H-1"'), 4.36 (bs, 1H, H-1"").

Received 12 March, 2001
Revised 20 September, 2001

