A New Flavonol Oligosaccharide from the Seeds of Aesculus chinensis

Feng WEI^{*}, Ling Yun MA, Yan LIU, Rui Chao LIN

Division of Chinese Materia Medica and Natural Products National Institute for the Control of Pharmaceutical & Biological Products State Drug Administration, Beijing 100050

Abstract: A new flavonol oligosaccharide, quercetin-3-O-[β -D-xylopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside-3'-O- β -D-glucopyranoside, named aescuflavoside was isolated from *Aesculus chinensis*. It's structure was elucidated by spectra FAB-MS, 1D NMR and 2D NMR including ¹H NMR, ¹³C NMR, HMQC and HMBC techniques.

Keywords: Aesculus chinensis, flavonol oligosaccharide, aescuflavoside, antivirus activity.

Aesculus chinensis is a traditional chinese medicinal plant widely distributed in China, which has been used to treat stomach disease. From recent research its seeds contain many flavonoids and proanthocyanidin A_2 , which have potential venotonic and vasoprotective action and powerful antioxidant activity. In this paper, we report the isolation and the structure elucidation of a new flavonol oligosacchride. Bioassay results showed that the compound exhibited an antivirus activity.

1

Compound **1** was isolated as a yellow powder from the EtOH extract of the seeds of this plant. UVmax (MeOH) 268, 352nm, and positive results of Molish and Mg/HCl reactions suggested that **1** was a flavonoid type compound. The FAB-MS of **1** displayed quasi-molecular ions $[M+H]^+$ and $[M+Na]^+$ at m/z 905 and 927 respectively, consistentwith a molecular formula of $C_{38}H_{48}O_{25}$. Complete acid hydrolysis of **1** afforded quercetin, which was identified by comparison of its NMR and IR data with

Feng WEI et al.

those reported in the literatures¹⁻², and glucose, xylose and rhamnose identified by TLC. The FAB-MS data 905 [M+H]⁺, 773 [M-Xyl+H]⁺, 627 [M-xyl-rha+H]⁺, 302 [M-xyl-rha-glc-glc]⁺ confirmed above conclusion. The four sugar residues were clearly indicated by the signals at δ_C 98.05, 102.03, 104.32, 100.26 in ¹³C NMR spectrum, signals at δ_H 5.61 (d, J = 7 Hz), 4.86 (d, J = 7 Hz), 4.58 (d, J = 7 Hz), 4.36 (s) in ¹H NMR spectrum³. Above data together with the results in 2D NMR indicated that the saccharide part was composed of two β -glucose, one β -xylose and one α -rhamnose residues. The absolute configurations of β -glucose and β -xylose were assumed to be D, and α -rhamnose be L.

Table 1 ¹³C NMR data for compound **1** in DMSO-d6 (δ ppm)

No.	$\delta_{\rm C}$	No.	δ _C	No	$\delta_{\rm C}$	No.	$\delta_{\rm C}$
2	155.22	2'	116.49	6"	60.69	4""	69.62
3	133.00	3'	145.11	C3-glc1"	98.05	5""	65.99
4	177.23	4'	149.75	2'''	81.55	Rha 1'''''	100.26
5	161.06	5'	116.49	3'''	75.84	2"""	70.30
6	98.67	6'	125.57	4'''	68.17	3"""	71.81
7	164.25	C-3'-Glc 1"	102.03	5'''	76.03	4''''	73.36
8	93.88	2"	73.76	6'''	65.69	5"""	69.64
9	156.35	3"	76.95	Xyl 1''''	104.32	6'''''	17.64
10	103.74	4"	69.62	2''''	73.36		
1'	121.19	5"	76.71	3''''	76.03		

No. Correlation of C No. $\delta_{\rm H}$ Correlation of C $\delta_{\rm H}$ 1""" C-6"" (65.61) C-3 (133.00), C-2" (81.55), C-5" (76.03) 1" 5.61 4.36 5''' C-6" (65.61) 1"" C2"" (81.55) 3.25 4.58 1" C3' (145.11) 4.86

Table 2 the data of HMBC of compound 1 (δ ppm)

Hence, the structure of **1** was established to be quercetin-3-O-[β -D-xylopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 6)]- β -D-gluc-opyranoside-3'-O- β -D-glucopyrano-side, named aescuflavoside.

References and Notes

- 1. D. Q. YU, J. S.YANG, *Fenxi Huaxue Shouce (Hand book of Anal. Chem.*), Chemical Industry Press, Beijing, **1999**, p.820.
- 2. D. C. CHEN, *The Application of ¹³C NMR in Natural Products Chemistry*, People's Health Press, Beijing, **1993**, p.360.
- ¹H NMR (δ ppm) of 1, 6.17 (d, 1H, 2, H-6), 6.46 (d, 1H, 2, H-8), 7.78 (d, 1H, 2, H-2'), 6.89 (d, 1H, 8.5, H-5'), 7.95 (dd, 1H, 2, 8.5 H-6'), 4.86 (d, 1H, 7, H-1"), 5.61 (d, 1H, 7, H-1"), 4.36 (bs, 1H, H-1"").

Received 12 March, 2001 Revised 20 September, 2001